Spring Lucene Reference Guide

0.8-SNAPSHOT

Thierry Templier (Argia-Engineering)

Copyright © 2006-2008

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

O I (o= o T TP PP PPPPRT PP 2
1.1, LUCENE LECNNOIOQY +eeeiuteeeeeiiiiieeeeit e e ettt e sttt et e e e e e e e e e e e s e e e e e e es 2

2 S = - (= o (0o £ PRSP 2
L.2.0. LUCENE JAVA ... nnnennn 2

s o 1 PSPPI 2

2 T 1 TSP PEP 2

2. Other tOOIS@QVAITADIEeeiiiiee et e e e e e e e e e e aneeees 4
2.0, COIMPBSS ...ceeeeee et ———— 4

2.2 HIDEINELE SEAICN ... e e e s e e e e e e raaeeeeas 4

3. AIM Of thE SUPPOIT ...t e e e e e r e e e e e s s et e e e e e e e s s eaenssaaeeeeeeeesaans 5
3.1, ArChiteCture @nd SLIUCLUIEcceeiieiiiieee e e e e s ettt e e e e e e e e e e e e e e e eeeaee e e s enneeees 5

3.2. Abstraction layer UPON LUCENEccovviviiiiiiieieeeeeeeeeeeee e e ee e e eeeeee e e e e eeee e e eeeeeeeeeeeeeeeeeeeees 5

3.3 EASY CONFIQUIBLIONeeiiiiiiiieiiie ettt e e st e e e e 5

3.4. Template-driven approaCh ... 5

3.5. DOCUMENT NANAIEY ..ot 5

4. HiStOry Of the SUDPPOITcceiiiieiieiitit ettt e e e e e e e e s anbeeeeeans 7
DY o o] 1.1 | ARSI 8
5.1. OBtaiN the SOUICESuvviiiiie e et ie et e e e e e e e e e e e s e st e e e e e e e s s annsnraneeeens 8

ST Y/ o o L1 = PP 8

5.3. Compileand build the MOAUIESooiiiiiiiiei e 8

6. Quick start dedicated to the Lucene indexing SUPPOITueeirreeeiiiiciiiiieeeeee e e eiiieeee e e e e e e 9
6.1. AiM Of the QUICKSEAITeeiiieii e 9

6.2. Configure the iNAEX FESOUICEScocuuiiieiiiiiee ettt 9

6.3. INdEXING AOCUMENESvviiiiie ittt e e et e e e e e e e s e st r e e e e e e e e snntrraeeeeeas 9

I N === ot 0 = PRSP 10

7. Quick start dedicated to the Lucene search SUPPOItcooooeeeeiiiiii e, 12
7.1, AIM Of the QUICKSEAITeeeiiie e e e eeeeas 12

7.2. Configure the SEaIrCh rESOUICESeiiiiiiiiiee e 12

7.3. Search documentS iN tE INAEXcveiieiiiiiie e 13

I1. Lucene Support Reference DOCUMENTALIONcceiiuririeiiiieiee et e et e e e e 14
8. LUCENE INAEXING SUPPOIT ...eiiiieeiiiiiiieeee e e e e e ee e e e e e e e et e e e e e e e s s ettt b e e e eaeeessantbrneeeeaaeaaans 15
S I (0] 001 o £ ST P PP PPPPPP 15

8.2. ConfigUreiNdiCEScoeeeeeeee e 15

8.3 ROOL ENEITIESeeeeiiiii ettt s e e e e a e e e nees 15

8.4. INAEX FOOL ENLILIESeeeiiiiie et e et e e e e e e e et e e e e e e e e e eneneeeeeeens 16
8.4.1. Simple indexing based on LUCENE ENLITIEScccvveeiiiiiciiiieeieeee e 17

8.4.2. Indexing using the abstraction methods of thetemplateoccccvvvieveeeennns 18

8.4.3. Analyzer spPeCifiCalionccooeeiiiiii i 20

8.4.4. Other iINdeXing OPEIaliONSccciiiuiiiieiiiiiee ittt 20

8.4.5. Use of the underlying reSoUrCe ..., 20

8.5. DA SUPPOIT CIASSvvviieiiieeeiiiiiiiee et ettt e e s e e e e e s s e e e e e e e e s e nntrraeeeaeas 21

8.6. Resource management and tranSaCtiONSoocvueeeeiiirieerniiiiee et e e 21

9. LUCENE SEAICN SUPPOI ...uveiiiieeeei i ittt e e e e e s e ettt e et e e e e s e e et e e e e ee e e s s s sabbaeeeeaesessantsraneeeaaeeaans 23
0.1, CONCEPES ...eeeeeeeeee ettt ettt e e e e et e e e e e e s e s e e e e e e e e e s a bbb e e et e e e e e e e e s nbn e et e e e e e e e nrbreeeeeeas 23

S 0 o = g1 1] (== PRSPPI 23

0.3, SaArCh FOOL ENLITIESuveiiiiie e e e e e e e s e reeeeaeas 23
9.3.1. Simple searches based 0N a qUENY SLHNGevveieiieeeiiiie e 24

9.3.2. Use of Lucene classesfor the Searches ... 24

9.3.3. Use of the underlying reSOUICEcooiiiiiiiiiiiiieiiiieee e 24

9.3.4. EXtract resultS Of SEaIrChEScooiiiiiiiiiiiiiie e 25

O.4. DAQO SUPPOIT CIBSS ...eeiiiitiiee ittt ettt ettt e et e s e e e e e e e e e 25

Spring Lucene (0.8-SNAPSHOT)

Spring Lucene Reference Guide

O.5. AQVANCEA SBAICHES ..ottt 26

9.5.1. SUPPOIt Of QUEIES ...vvviiiiieee ittt e e e e e e e s e s raeeeeaaeeaans 26

O.5.2. FltEr @N0 SOM ...t e e e e e e e r e e e e e e s e e raeeeeaeeeaans 26

9.5.3. Paginalioncooee i 26

0.6. ODJECE BPPIOBCHeiiieieiee e 26

L0 @0 011 To 0] (o) o SRR 27
FO.2. LUCENE ..ttt ettt e ettt e e e e e e s bb bbbttt e e e e e e e abbb e e et e e e e e s e annbbbeeeeeaas 27

10.1.1. ReSOUICe CONFIQUIBLIONvveeiiiireeeeaiieee e ettt e ettt e e 27

10.1.2. Analyzer configUralionceeeeeeiiiiiiiiiiee e e e e e e e s eannees 28

[11. Solr Support Reference DOCUMENTALIONuviieiiiiiee et e e e st e e 30
[V . OLNEN RESOUITESeeiiieeeiiiiit ettt e ettt e et e ettt e e e e e s e sttt et e e e e e e e annteeeeeeaaeeeaansnnenneaaaeeaans 31
VY o] 1< 16 ()= PO 32

Spring Lucene (0.8-SNAPSHOT)

Part |. Introduction

Spring Lucene (0.8-SNAPSHOT)

Chapter 1. Lucene

1.1. Lucene technology

According to the home page project, "Apache Lucene is a high-performance, full-featured text search engine
library written entirely in Java. It is a technology suitable for nearly any application that requires full-text
search, especially cross-platform®.

The project is hosted by Apache and allows to make scalable architecture based on distributed indexes by
providing supports for indexing and searching indexes. It provides several kinds of indexes (in-memory,
file-system based, database based).

Here are the list of the Lucene related projects:

Lucene Java (Javaimplementation),
* Nutch,

¢ Lucy (C implementation),

* Salr,

» Lucene.Net (.Net implementation),
e Tika

+ Mahout.

1.2. Related tools

1.2.1. Lucene Java

Lucene Java is the implementation of the Lucene technology with the Java language. Other languages like C
and .Net are still supported with respectively the Lucy and Lucene.Net projects.

Lucene Java allows to interact and search the index using the Java language.

Thetool is available at the url http://lucene.apache.org/javal

1.2.2. Solrj

Solr is an open source enterprise search server based on the Lucene Java search library, with XML/HTTP and
JSON APIs, hit highlighting, faceted search, caching, replication, a web administration interface and many
more features. It runsin a Java servlet container such as Tomcat.

Thetool is available at the url http://lucene.apache.org/solr/

1.2.3. Tika

Spring Lucene (0.8-SNAPSHOT) 2

Lucene

Apache Tika is a toolkit for detecting and extracting metadata and structured text content from various
documents using existing parser libraries.

Thetool isavailable at the url http://lucene.apache.org/tikal

Spring Lucene (0.8-SNAPSHOT) 3

Chapter 2. Other tools available

In this section, we will describe the other tools available in the Java community in order to make easier the use
of the Lucene technology. For eath tool, we will show how the Spring Lucene support is different.

2.1. Compass

TODO

2.2. Hibernate Search

TODO

Spring Lucene (0.8-SNAPSHOT) 4

Chapter 3. Aim of the support

The aim of the Lucene support is to provide facilities in order to use the tools based on Lucene in a Spring
environment. The support follows the principles than those used in the Spring framework.

With the current version of the tool, only Lucene Java is supported but the supports of Solrj and Tika will be
added soon in the next version. The same features are provided in the context of these tools.

3.1. Architecture and structure

TODO: describe the high level architecture of the project

TODO: describe the approach to make easy the use of Lucene technologiesin Spring applications

3.2. Abstraction layer upon Lucene

The support provides a thin layer upon the Lucene API which offers the same feature basing on interfaces. It
enabled a level of indirection in order to make easier the resource management in different context and make
possible unit tests of classes using Lucene. Thisthin layer covers both indexing and searching

With this feature, you can specify the resource management strategy declaratively in the Spring configuration
according to the use context of Lucene. This aspect is supported for both indexing and searching with dedicated
strategies. As amatter of fact, Lucene owns specific resources management to access indices. For instance, you
can share searcher instances in order to search in a concurrent environment. However, only one instance of
L ucene writer can access an index in order to update it.

3.3. Easy configuration

In addition, the support provides interesting facilitiesin order to configure these resources and the use strategies
in a Spring environment thanks to a dedicated namespace. This configuration facility is available for both
indexing and searching.

3.4. Template-driven approach

Besides this aspect, the support provides too a classic template-driven approach, this approach being currently
used in the Spring integration of tools. Templates integrate all the technical plumbing management allowing
you to concentrate on the specific code of your application.

The support integrate itself the declarative transaction management of Spring with dedicated implementations
of Pl at f or mlT ansact i onManager interface related to Lucene tools. These features are based on the underlying
API of these tools.

3.5. Document handler

On the other hand, the support provides a generic document handling feature in order to offer dedicated entities
to create documents . This feature also manages the document and handler association. The handler has the

Spring Lucene (0.8-SNAPSHOT) 5

Aim of the support

responsibility to create a document from an object or an InputStream . The feature is particularly useful to
manage the indexing of different file formats.

Spring Lucene (0.8-SNAPSHOT) 6

Chapter 4. History of the support

TODO

Spring Lucene (0.8-SNAPSHOT)

Chapter 5. Development

This section is dedicated to devel opers who want to get the sources, compile them and eventually contribute to
the project.

5.1. Obtain the sources

TODO: describe how to obtain sources with svn

5.2. Modules

TODO: list and describe the modules of the projects

5.3. Compile and build the modules

TODO: describe how to compile and build the modules using Maven

Spring Lucene (0.8-SNAPSHOT) 8

Chapter 6. Quick start dedicated to the Lucene
Indexing support

6.1. Aim of the quickstart

The aim of this section is to provide quickly a short view of the way to implement indexing on a L ucene index
using the Lucene support. It allows us to show the usage of the main entities of this support and how to
configure them in asimply way.

6.2. Configure the index resources

The Lucene support of Spring provides a dedicated namespace in order to easily configure resources related to
the index. It supports both in memory and filesystem indexes.

The first step of the configuration is to create a root structure of the Spring XML file integrating the lucene
namespace. This configuration is shown in the following code:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: |l ucene="http://ww. springfranework. org/ schema/ | ucene"
xsi : schemaLocati on="http://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
htt p: / / ww. spri ngf ranewor k. or g/ schena/ | ucene
http://ww. springframework. or g/ schema/ | ucene/ | ucene-i ndex. xsd" >

(O

</ beans>

For the example, we configure a simple filesystem index whose the content is located in the classpath. The tag
index of the namespace and its attributes must be used in order to configure this aspect, as shown in the
following code:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans (...)>
<bean i d="anal yzer" cl ass="org. apache. | ucene. anal ysi s. Si npl eAnal yzer"/>

<l ucene:index id="nyDirectory" anal yzer-ref="anal yzer">
<l ucene: fsDirectory |ocation="/org/springframework/| ucene/ config"/>
<l ucene: i ndexFact ory/ >
</l ucene: i ndex>
</ beans>

Y ou can note that the simple analyzer of Lucene is used and configured as a bean in the previous code.

Now that you have configured the index with the index tag, the lucene support allows you to access afactory in
order to obtain resources in order to interact with the index. Thisfactory is automatically configured as a Spring
bean with the identifier specified on the index tag.

6.3. Indexing documents

The next step is to use the configured factory in order to interact with the index, indexing documents in our
case. In that purpose, we create an indexing service class named SamplelndexingService. The later used the
abstract class LucenelndexDaoSupport as parent class to have the setter method for the factory previously

Spring Lucene (0.8-SNAPSHOT) 9

Quick start dedicated to the Lucene indexing support

configured.

The following code shows the skeleton of the class Samplel ndexingService:

public class Sanpl el ndexi ngServi ce extends Lucenel ndexDaoSupport {

public void indexDocunents() {

(...)
}

The configuration of this classin Spring is really simple, as described in the following code:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans (...)>

(...)

<l ucene:index id="nyDi rectory" anal yzer-ref="anal yzer">

(.-)

</l ucene: i ndex>

<bean id="sanpl el ndexi ngServi ce" class="org. springfranmework. | ucene. sanpl e. Sanpl el ndexi ngServi ce" >
<property name="indexFactory" ref="nyDirectory-indexFactory"/>
</ bean>
</ beans>

Y ou have now afully configured class for indexing. Y ou can now use the central entity of the Lucene indexing
support, the Lucenelndex>Template, in order to implement your indexing features. In the sample, we describe
how to index two documents, as in the following code:

public void indexDocunments() {
Docunent docunentl = new Docunent ();
docunent 1. add(new Field("field", "a sanple 1", Field. Store. YES, Field.|ndex. ANALYZED));
docunent 1. add(new Field("sort", "2", Field.Store. YES, Field.|ndex.NOT_ANALYZED));
get Lucenel ndexTenpl at e() . addDocunent (docunent 1) ;

Docunment docunent2 = new Documnent () ;

docunent 2. add(new Field("field", "a sanple 2", Field. Store. YES, Field.|ndex. ANALYZED));
docunent 2. add(new Fi el d("sort", "1", Field.Store.YES, Field.|ndex. NOT_ANALYZED));

get Lucenel ndexTenpl at e() . addDocunent (docunent 2) ;

6.4. Transactions

The support provides an implementation in order to use the declarative transaction support of Spring. This
implementation, the class L ucenel ndexTransactionManager, can be configured basing on the previous factory.
The following code describes the configuration of the manager:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans (...)>

(...)

<bean i d="I| ucenel ndexTr ansacti onManager"
cl ass="org. springfranmework. | ucene. i ndex. factory. Lucenel ndexTransact i onManager " >
<property name="indexFactory" ref="nyDirectory-indexFactory"/>
</ bean>
</ beans>

Then, the aop and transactional supports of Spring can be used in order to apply transactions on the
indexDocuments method of the Samplel ndexingService class, as described below:

<?xm version="1.0" encodi ng="UTF-8"?>

Spring Lucene (0.8-SNAPSHOT) 10

Quick start dedicated to the Lucene indexing support

<beans (...)>

(...)

<aop: confi g>
<aop: advi sor poi nt cut ="execution(* *..Sanpl el ndexi ngService.*(..))" advice-ref="txAdvice"/>
</ aop: confi g>

<t x:advi ce id="txAdvi ce" transaction-nmanager="transacti onManager" >
<tx:attributes>
<t x: met hod name="i ndexDocunents"/>
</tx:attributes>
</t x: advi ce>
</ beans>

Spring Lucene (0.8-SNAPSHOT)

11

Chapter 7. Quick start dedicated to the Lucene
search support

7.1. Aim of the quickstart

The aim of this section is to provide quickly a short view of the way to implement search on a Lucene index
using the Lucene support. It allows to show the usage of the main entities of this support and how to configure
them in asimply way.

We assume that you run the previous quick start in order to populate the index and have documents that match
the query.

7.2. Configure the search resources

The Lucene support of Spring provides a dedicated namespace in order to easily configure resources related to
the index. It supports both in memory and filesystem indexes.

The first step of the configuration is to create a root structure of the Spring XML file integrating the lucene
namespace. This configuration is shown in the following code:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: | ucene="http://ww. springfranework. org/ schema/ | ucene"
xsi : schemaLocati on="http://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
htt p: // ww. spri ngf ranewor k. or g/ schena/ | ucene
http://ww. springframework. or g/ schema/ | ucene/ | ucene-i ndex. xsd" >

(.--)

</ beans>

For the example, we configure a simple filesystem index whose the content is located in the classpath. The tag
index of the namespace and its attributes must be used in order to configure this aspect. An instance of
SearcherFactory must be configured too in order to use the search facility of Spring.

The following code shows the configutation of these entities:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans (...)>
<bean i d="anal yzer" cl ass="org. apache. | ucene. anal ysi s. Si npl eAnal yzer"/>

<l ucene:index id="nyDirectory" anal yzer-ref="anal yzer">
<l ucene: fsDirectory | ocation="/org/springfranmework/|ucene/config"/>
<l ucene: sear cher Fact ory/ >
</l ucene: i ndex>
</ beans>

Y ou can note that the simple analyzer of Lucene is used and configured as a bean in the previous code.

Now that you have configured the index with the index tag, the lucene support allow you to access afactory in
order to obtain resources in order to interact with the index. This factory is automatically configured as a Spring
bean with the identifier specified on the index tag.

Spring Lucene (0.8-SNAPSHOT) 12

Quick start dedicated to the Lucene search support

7.3. Search documents in the index

The next step is to use the configured factory in order to search the index. In that purpose, we create a search
service class named SampleSearchService. The later used the abstract class L uceneSearchDaoSupport as parent
class to have the setter method for the factory previously configured.

The following code shows the skeleton of the class SampleSearchService:

public class Sanpl eSear chServi ce ext ends LuceneSear chDaoSupport {

public void searchDocunents() {
¢...)
}

The configuration of this classin Spring is really simple, as described in the following code:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans (...)>

(...)

<l ucene:index id="nyDirectory" analyzer-ref="anal yzer">

(--2)

</l ucene: i ndex>

<bean i d="sanpl eSear chServi ce" class="org. spri ngfranmework. | ucene. sanpl e. Sanpl eSear chSer vi ce" >
<property name="sear cher Factory" ref="nyDirectory-searcherFactory"/>
</ bean>
</ beans>

Y ou have now a fully configured class for searching. Y ou can now use the central entity of the Lucene search
support, the LuceneSearchTemplate, in order to implement your searching features. In the sample, we describe
how to search documents basing a string query, as in the following code:

public void searchDocurments() ({
Li st<String> results = getLuceneSearchTenpl ate().search("field:lucene", new HitExtractor() {
public Object mapHit(int id, Document document, float score) {
return docunent.get("field");

}
1)
for (String field : results) {
Systemout.println("Result: " + field);
}

Spring Lucene (0.8-SNAPSHOT) 13

Part Il. Lucene Support Reference
Documentation

Spring Lucene (0.8-SNAPSHOT)

14

Chapter 8. Lucene indexing support

8.1. Concepts

TODO

8.2. Configure indices

The support provides facilities in order to configure different kinds of directories in order to access indices.
Both RAM and filesystem directories are supported thanks to the RAMDIrectoryFactoryBean and
FSDi r ect or yFact or yBean Classes.

These two classes allow to handle correctly directories, i.e. they are closed on the shutdown of the application
context of Spring. However, these entities don't allow the creation new indices when they don't exist. To do
that, you must use an implementation of the | ndexFact ory interface like the si npl el ndexFact ory class and its
cr eat e property. In this case, the index structureis created at the first access.

The following code shows how to configure a RAM directory:

<bean i d="ranDirectory" class="org.springframework.| ucene.index. support.RAMDI rectoryFact oryBean"/>

<bean i d="i ndexFactory" class="org.springframework.|ucene.index.factory. Si npl el ndexFact ory">
<property name="directory" ref="ranDirectory"/>
<property name="create" value="true"/>

</ bean>

The following code shows how to configure afilesystem directory:

<bean i d="fsDirectory" class="org.springfranework.|ucene.index. support.FSDirectoryFactoryBean"/>

<bean i d="i ndexFactory" class="org. springframework. | ucene.index.factory. Si npl el ndexFactory" >
<property name="directory" ref="ranDirectory"/>
<property name="create" val ue="true"/>

</ bean>

8.3. Root entities

indirection level. change the strategy of management of resource in the configuration without any change in the
code. TODO: IndexFactory and abstraction layer TODO: IndexReaderWrapper/IndexWriterWrapper and
abstraction layer

The following code describes the content of the | ndexFact ory interface, entity allowing the access to the
resources in order to interact with the index:

public interface IndexFactory {
I ndexReader W apper get | ndexReader () ;
I ndexW it er Wapper getlndexWiter();

The following table shows the different implementations of the | ndexFact ory interface provided by the
support:

Spring Lucene (0.8-SNAPSHOT) 15

L ucene indexing support

Table8.1.

Implementation

SimplelndexFactory

L ocklndexFactory

8.4. Index root entities

Description

The simplest and by default implementation of the
interface which is based on the
Si npl el ndexReader W apper and
Si npl el ndexW it er Wapper implementations. For
each ask of aresource, a new one is created basing on
the injected directory. This implementation supports
too the creation of the structure for a new index and
the locking resolution. In this case, you need to use
respectively thecreat e and r esol veLock properties.

The concurrent implementation based on a lock
strategy. This class is a delegating implementation
that encapsulate a target index factory. The
implementation put a lock at the acquiring of a
resource and leave it after its use.

The Lucene indexing support adds other abstractions in order to TODO:

Table8.2.

Entity

Interface

Description

Document creator

Document creator using
InputStream

Documents creator

an

Docunent Cr eat or

This entity enables to create a
document in order to use it in an
indexing process (add or update).

| nput St r eanDocument Cr eat or This entity enables to create a

document using an InputStream
(related to afile or others) in order
to use it in an indexing process
(add or update).

Docunent sCr eat or This entity enables to create

several documents in order to use
it in an indexing process (add or
update).

Reader callback

Writer callback

Reader Cal | back

Wi terCall back

This entity corresponds to a
callback interface in order to
enable the use of the underlying
resource, Lucene reader wrapper,
managed by the Lucene support.

This entity corresponds to a

Spring Lucene (0.8-SNAPSHOT) 16

L ucene indexing support

Entity Interface Description

callback interface in order to
enable the use of the underlying
resource, Lucene writer wrapper,
managed by the L ucene support.

The central entity of the support used to execute indexing operations is the Lucene indexing template. It offers
several ways to configure indexing according to your needs and your knowledge of the underlying API of
Lucene. In this context, we can distinguish three levels to implement indexing in the support:

» Using the abstraction level provided by the template;
* Using the template with the Lucene entities like Docunent and Ter
« Advanced indexing using the underlying writer instance.

The template allows you to handle several kinds of operations, as described in the following list:

Add operations of document in the index;
» Update operations of documentsin the index;

« Delete operations of documentsin theindex;

Extra operations like optimizing the index.

We will describe now all these features with these different approachesin the following sections.

8.4.1. Simple indexing based on Lucene entities

The support lets you use directly the Lucene entities like the Document and/ Term classes in order to
manipulate the index. In this case, you have the responsability to create the documents to add or update and the
term. The latters are then passed to the addDocurent (s) and updat eDocunent (s) methods. In this case, the
template has the responsability to handle the underlying Lucene resources in order to manage the operation.

Related to the adding, the support provides the ability to add only one document with the addDocunent
methods. In order to add several documents, addDocunent s methods are provided too.

The following example shows how to create a Lucene document and add it to the index using the addDocunent
method:

Docunment docunment = new Docunent () ;

docunent . add(new Field("field", "a sanple 1", Field. Store. YES, Field.|ndex. ANALYZED));
docunent . add(new Field("sort", "2", Field.Store.YES, Field.|ndex. NOT_ANALYZED));

get Lucenel ndexTenpl at e() . addDocunent (docunent) ;

The following example shows how to create a list of Lucene documents and add it to the index using the
addDocument s method:

Li st <Docunent > docunents = new ArraylLi st <Docunent >();

Docunment docunentl = new Docunent () ;

docunent 1. add(new Field("field", "a sanple 1", Field. Store. YES, Field.|ndex. ANALYZED));
docunent 1. add(new Fi el d("sort", "1", Field.Store.YES, Field.|ndex. NOT_ANALYZED));
docunent s. add(docunent 1) ;

Spring Lucene (0.8-SNAPSHOT) 17

L ucene indexing support

Docunment docunent2 = new Docunent () ;

docunent 2. add(new Field("field", "a sanple 2", Field. Store. YES, Field.|ndex. ANALYZED));
docunent 2. add(new Fi el d("sort", "2", Field.Store.YES, Field.|ndex. NOT_ANALYZED));
docunent s. add(docunent 2) ;

get Lucenel ndexTenpl at e() . addDocunent s(docunent s) ;

In the case of updating documents, the template does a smart update because it checks if the term corresponds
exactly to a document in the case of the updat eDocunent method and at |east to one document in the case of the
updat eDocunent s method.

The update methods of the template use internally the update methods of the index writer. These latters make a
delete of documents based on the specified term and then add the document. Thus, the corresponding methods
of the template follow the same mechanism.

The following code shows the use of the updat eDocunent method:

Docunent docunent = new Docunent () ;

docunent . add(new Field("field", "a Lucene sanple", Field.Store.YES, Field.|ndex.ANALYZED));
docunent . add(new Field("sort", "2", Field.Store.YES, Field.|ndex. NOT_ANALYZED));

get Lucenel ndexTenpl at e() . updat eDocunent ("fi el d: | ucene", docunent);

The following code shows the use of the updat eDocurrent s method in order to update several documents with
one operation of the template:

Li st <Docunent > docunents = new Arrayli st <Docunent >();

Docunent docunentl = new Docunent ();

docunent 1. add(new Field("field", "a sanple", Field.Store.YES, Field.|ndex.ANALYZED));
docunent 1. add(new Fi el d("sort", "1", Field.Store.YES, Field.|ndex. NOT_ANALYZED));
docunent s. add(docunent 1) ;

Docunment docunent2 = new Docunent () ;

docunent 2. add(new Field("field", "a Lucene sanple", Field. Store. YES, Field.|ndex. ANALYZED));
docunent 2. add(new Field("sort", "2", Field. Store.YES, Field.|ndex.NOT_ANALYZED));

docunent s. add(docunent 2) ;

get Lucenel ndexTenpl at e() . updat eDocunent s("fi el d: sanpl e", docunents);

The delete methods follow the same mechanisms of the update methods according the checks of documents.
Both del et eDocurent and del et eDocunents are provided by the template in order to delete one or more
documents.

The following code shows the use of del et eDocument and del et eDocunent s methods:

get Lucenel ndexTenpl at e() . del et eDocunent ("fi el d: 1 ucene");
get Lucenel ndexTenpl at e() . del et eDocunent s("fi el d: sanpl e");

8.4.2. Indexing using the abstraction methods of the template

The template of the Lucene support provides too the ability to use an abstraction layer in the process of Lucene
document creation. The main advantages of this approach consists in the handling of resources according to the
exception eventually thrown during the document creation. The template supports both simple document
creators and input stream based document creators.

The template offers the possibility to use this mechanism with addDocument (s) and updat eDocunent ('s)
methods. We will describe now this feature.

Spring Lucene (0.8-SNAPSHOT) 18

L ucene indexing support

The following code describes the content of the simplest document creator, which provides a simple way to
create a L ucene document:

public interface Docunent Creator {
Docunent creat eDocunent () throws Exception;

}

The following code shows the way to use the Docunent Cr eat or interface with the addDocurmrent method of the
template:

get Lucenel ndexTenpl at e() . addDocunent (new Docunent Creator () {
publ i c Docunent createDocunent () throws Exception {
Docunent docunent = new Docunent () ;
docunent . add(new Field("field", "a Lucene sanple", Field. Store. YES, Field.|ndex. ANALYZED));
docunent . add(new Field("sort", "2", Field. Store. YES, Field.|ndex.NOT_ANALYZED));
return docunent;

}
});

The I nput St r eanDocunent Cr eat or interface provides a dedicated entity in order to create a Lucene document
from an 1 nput St ream When using this interface, you need to specify how to obtain the I nput St reamand to
create a document from this | nput St r eam

The template has the responsability to correctly handle the I nput Stream and to close it in every case. The
following code describes the content of the I nput St r eanDocunent Cr eat or interface:

public interface InputStreanDocunent Creator {
| nput St ream creat el nput Strean() throws | OException;
Docunent creat eDocunent From nput St r ean{ | nput St ream i nput Strean) throws Exception;

The following code shows the way to use the | nput St r eanDocunent Cr eat or interface with the addDocunent
method of the template:

t enpl at e. addDocunent (new | nput St reanDocunent Creator () {
public | nputStreamcreatel nputStream() throws | OException {
Cl assPat hResour ce resource = new Cl assPat hResour ce(
"/ org/springfranmework/| ucene/index/core/test.txt");
return resource. getlnputStrean();

}

publ i c Docunent createDocunent From nput Strean{ | nput Stream i nput Strean) throws Exception {
String contents = | OU0ils. getContents(inputStrean;

Docunment docunment = new Documnent () ;

docunent . add(new Field("field", contents, Field.Store.YES, Field.|ndex. ANALYZED));
docunent . add(new Field("sort", "2", Field.Store.YES, Field.|ndex. NOT_ANALYZED));
return docunent;

}
5)s

Finaly the support provides an entity in order to create a list of Lucene documents to be added, the
Docunent sCr eat or interface. It is similar to the Docunent Cr eat or interface. The following code describes this
interface:

public interface DocunentsCreator {
Li st <Docunent > creat eDocunent s() throws Exception;
}

The following code shows the way to use the Docunent sCreat or interface with the addDocurment s method of
the template:

Spring Lucene (0.8-SNAPSHOT) 19

L ucene indexing support

t enpl at e. addDocunent s(new Docunent sCreator () {
public List<Docurment> createDocunents() throws Exception {
Li st <Docunent > docunents = new ArraylLi st <Docunent >();

Docunment docunentl = new Docunent () ;

docunent 1. add(new Field("field", "a Lucene sanple", Field. Store.YES, Field.|ndex.ANALYZED));
docunent 1. add(new Field("sort", "1", Field.Store.YES, Field.|ndex. NOT_ANALYZED));

docunent s. add(docunent 1) ;

Docunent docunent2 = new Docunent () ;

docunent 2. add(new Field("field", "a sanple", Field.Store.YES, Field.|ndex.ANALYZED));
docunent 2. add(new Field("sort", "2", Field. Store.YES, Field.|ndex.NOT_ANALYZED));
docunent s. add(docunent 2) ;

return docunents;

B8

8.4.3. Analyzer specification

There are two approaches in order to specify an analyzer during the indexing process. On one hand, you can set
agloba analyzer for the template which is used as default analyzer. Thus, with methods without an anal yzer
parameter, the global analyzer of the template is used. The following code describes the use of this approach:

Docunment docunment = new Documnent () ;

docunent . add(new Field("field", "a sanple 1", Field. Store. YES, Field.|ndex. ANALYZED));
docunent . add(new Field("sort", "2", Field.Store.YES, Field.|ndex. NOT_ANALYZED));

get Lucenel ndexTenpl at e() . addDocunent (docunent) ;

In the code above, the default analyzer injected in the template is used to add the document. If no analyzer is
defined, an exception is thrown.

The support provides too methods with a anal yzer parameter. In this case, the specified analyzer is used
instead of the default one. The following code describes the use of this approach with the same operation:

Si npl eAnal yzer anal yzer = new Si npl eAnal yzer();

Docunment docunment = new Documnent () ;

docunent . add(new Field("field", "a sanple 1", Field. Store. YES, Field.|ndex. ANALYZED));

docunent . add(new Field("sort", "2", Field.Store.YES, Field.|ndex. NOT_ANALYZED));
get Lucenel ndexTenpl at e() . addDocunent (docunent, anal yzer);

8.4.4. Other indexing operations

TODO: describe the use of optimize, getX XX methods

8.4.5. Use of the underlying resource

The aim of the indexing template is to integrate and hide the use of Lucene API in order to make easy the
indexing. This entity provides to the developer all the common operations in this context. However, if you need
to go beyond these methods, the template enables to provide the underlying reader and writer entities in order
to useit explicitely.

The feature is based on the Reader Cal | back and Wi t er Cal | back interfaces described above. When using the
entity, you need to implement respectively the dow t hReader and dow t hw i t er methods which gives you the
underlying instance corresponding the reader and the writer. These latter can be used in your indexing.

The Lucene support continues however to handle and manage these resources. The code below describes the

Spring Lucene (0.8-SNAPSHOT) 20

L ucene indexing support

content of the interface Reader Cal | back:

public interface ReaderCall back {
Obj ect doW t hReader (| ndexReader W apper reader) throws Exception;
}

The code below describes the content of the interface wi t er Cal | back:

public interface WiterCallback {
oj ect doWthWiter(lndexWiterWapper witer) throws Exception;
}

This entity can be used as parameter of theread and wri t er methods of the template, as shown in the following
code:

get Lucenel ndexTenpl ate().wite(new WiterCallback() {
public Object doWthWiter(lndexWiterWapper witer) throws Exception {
Docunent docunent = new Docunent ();
docunent . add(new Field("field", "a sanple", Field.Store.YES, Field.|ndex. ANALYZED));

writer.addDocunent (docunent);

return null;

}
1)

When using the underlying writer, the analyzer specified for the index template is not used. You need to
explicitely specify it on your calls or configure it on the index factory used. In the latter case, the analyzer is set
during the creation of the writer.

8.5. DAO support class

Like in the other dao supports of Spring, the L ucene support provides a dedicated entity in order to make easier
the injection of resources in the entities implementing Lucene indexing. This entity, the
Lucenel ndexDaoSupport class, alows to inject a | ndexFact ory and an analyzer. You don't need anymore to
create the corresponding injection methods.

In the same time, the class provides too the get Lucenel ndexTenpl at e method in order to have access to the
index template of the support.

The following code describes the use of the Lucenel ndexDaoSuppor t in aclassimplementing a search:

public class Sanpl eSearchServi ce extends Lucenel ndexDaoSupport {

public void i ndexDocunments() {
Docunment docunment = new Docunent () ;
docunent . add(new Field("field", "a sanple 1", Field. Store. YES, Field.|ndex. ANALYZED));
docunent . add(new Field("sort", "2", Field.Store.YES, Field.|ndex. NOT_ANALYZED));
get Lucenel ndexTenpl at e() . addDocunent (docunent) ;

Y ou can note that the class makes possible to directly inject a configured Lucenel ndexTenpl at e in Spring.

8.6. Resource management and transactions

Spring Lucene (0.8-SNAPSHOT) 21

L ucene indexing support

Lucene has the particularity to alow the creation of only one index writer for an index simultaneously. That's
why you need to be careful when indexing documents.

On the other hand, Lucene provides now a support of transactions when updating the index. The support
provides a dedicated implementation of the Spring Pl atfornilr ansacti onManager in order to use the
transactional support of the framework.

This implementation, the Lucenel ndexTr ansact i onManager class, must be configured using an instance of
I ndexFact ory, as shown in the following code:

<bean id="indexFactory" class="org.springfranmework.|ucene.index.factory. Si npl el ndexFact ory">

(--4)

</ bean>

<bean i d="transacti onManager" class="org. springfranework.|ucene.index.factory. Lucenel ndexTransacti onManager">
<property name="indexFactory" ref="indexFactory"/>
</ bean>

This implementation of the PI at f or nilr ansact i onManager supports read-only transactions, which allows to
extend the scope of a Lucene index reader but doesn't allow the use of an index writer.

Spring Lucene (0.8-SNAPSHOT) 22

Chapter 9. Lucene search support

9.1. Concepts

TODO

9.2. Root entities

TODO: SearcherFactory and abstraction layer

TODO: SearcherWrapper and abstraction layer

TODO: reopen a searcher

9.3. Search root entities

The Lucene search support adds other abstractionsin order to TODO: LuceneSearcher

Table9.1.

Entity Interface Description

Hit extractor Hi t Extract or This entity enables to extract
informations of documents
contained in the result of the
search.

Query creator Quer yCr eat or This entity specifies how to create

a Lucene query basing the different
supports of the tools.

Query result creator

Searcher callback

Quer yResul t Creat or

Sear cher Cal | back

This entity specifies the strategy to
be used in order to retrieve al or a
subset of the results. It enables to
easily handle pagination and the
retrieving of the first results.

This entity corresponds to a
calback interface in order to
enable the use of the underlying
resource managed by the Lucene
support.

The central entity of the support used to execute searches is the Lucene search template. It offers several ways
to configure search contents according to your needs and your knowledge of the underlying API of Lucene. In
this context, we can distinguish three levels to implement searches in the support:

Spring Lucene (0.8-SNAPSHOT)

23

L ucene search support

« Driven by Lucene query requests as string;
e Custom query building using the Query and Quer yPar ser classes and subclasses of Lucene;
» Advanced query building using the underlying searcher instance.

We will describe now all these approachs in the following sections.

9.3.1. Simple searches based on a query string

With this approach, you aren't tied to the Lucene API and can directly use search expressions as query strings.
It enables you to use all the powerful of Lucene query string for the searches.

The simplest way to make a search is to specify the query string to the sear ch method as a parameter. In this
case, you need to explicitely specify the fields corresponding to expressions because no default field is used.
The following code shows how to execute the query string "fi el d: | ucene", i.e. al the documents in the index
owing thefti el d field containing theterm "1 ucene" :

Li st<String> results = getLuceneSearchTenpl ate().search("field:lucene", new HitExtractor() {
public Object mapHit(int id, Document document, float score) {
return docunent.get("field");
}

1)

The support provides too the ability to specify one or several default fields for the search. In this case, there is
no need to explicitely specify the fields the search is based on. The following code describes the same search as
previoudly but using the approach using fi el d adefault field:

Li st<String> results = getLuceneSearchTenpl ate().search("field", "lucene", new H tExtractor() {
public Object mapHit(int id, Document docunment, float score) {
return docunent.get("field");
}

1)

When using several default fields, atable of strings can be passed asfirst parameter of the sear ch methods.

9.3.2. Use of Lucene classes for the searches

TODO:

9.3.3. Use of the underlying resource

The aim of the search template is to integrate and hide the use of Lucene API in order to make easy the use of
searches. This entity provides to the developer al the common operations in this context. However, if you need
to go beyond these methods, the template enables to provide the underlying searcher entity in order to use it
explicitely.

The feature is based on the Sear cher Cal | back interface described above. When using the entity, you need to
implement the dow t hSear cher method which gives you the underlying instance of the searcher. This latter can
be used for your search.

The Lucene support continues however to handle and manage this resource. The code below describes the
content of thisinterface:

public interface SearcherCall back {

Spring Lucene (0.8-SNAPSHOT) 24

L ucene search support

bj ect doWt hSear cher (Sear cher W apper searcher) throws Exception;

This entity can be used as parameter of a search method of the template, as shown in the following code:

List<String> results = (List<String>) getLuceneSearchTenpl ate().search(new Searcher Cal | back() {
public Object doWthSearcher (Searcher Wapper searcher) throws Exception {
LuceneHi ts hits = searcher.search(new TermQuery(new Term("field", "lucene")));
List<String> results = new ArraylList<String>();
for (int cpt=0; cpt<hits.length(); cpt++) {
Docunment docunent = hits.doc(cpt);
resul ts. add(docurent . get("field"));

}

return results;

1)

9.3.4. Extract results of searches

The Lucene support offers several different strategiesin order to extract datas from the result of searches:

» Extraction based of the Hi t Ext ract or interface, interface provided by the support;
« Configuration of the strategy based on the QueryResultCrezator;
« Extraction based of the LuceneHi t Col | ect or interface.

The central interface used by the search template in order to return the documents of a search is the
Hi t Extract or interface. This interface isn't a Lucene interface and is provided by the support. It offers a
convenient way to implement mapping in order to convert document into data objects.

In contrary to the Lucene Hit Col | ect or interface, the mapHi t method of this interface provides the current
document of the iteration. The built object is automatical added in the collection returned.

The following code describes the content of the Hi t Ext r act or interface:

public interface HitExtractor {
Object mapHit(int id, Docunment docunent, float score);

}

TODO: control the building of the result collection with QueryResultCreator

The following code describes the content of the Quer yResul t Cr eat or interface:

public interface QueryResultCreator {
Li st createResult(LuceneHits hits, H tExtractor hitExtractor) throws | COException;
}

TODO: Lucene HitCollector

The following code describes the content of the Hi t Col | ect or interface:

public interface HitCol | ector {
void collect(int doc, float score);
}

Spring Lucene (0.8-SNAPSHOT) 25

L ucene search support

9.4. DAO support class

Like in the other dap supports of Spring, the Lucene support provides a dedicated entity in order to make easier
the injection of resources in the entities implementing Lucene searches. This entity, the
LuceneSear chDaoSupport class, allows to inject a Sear cher Fact ory and an analyzer. Y ou don't need anymore
to create the corresponding injection methods.

In the same time, the class provides too the get LuceneSear cher Tenpl at e method in order to have access to the
search template of the support.

The following code describes the use of the LuceneSear chDaoSuppor t in aclassimplementing a search:

public class Sanpl eSearchServi ce extends LuceneSearchDaoSupport {

public void searchDocunments() {
Li st<String> results = getLuceneSearchTenpl ate().search("field:lucene", new HitExtractor() {
public Object mapHit(int id, Document docunment, float score) {
return docunent.get("field");
}

1)

Y ou can note that the class makes possible to directly inject aconfigured LuceneSear cher Tenpl at e in Spring.

9.5. Advanced searches

TODO

9.5.1. Support of queries

TODO: Queries as string

TODO: Programmatically building of queries

9.5.2. Filter and sort

TODO:

9.5.3. Pagination

TODO: first results

TODO: pagination with PagingQueryResultCreator

9.6. Object approach

TODO

Spring Lucene (0.8-SNAPSHOT) 26

Chapter 10. Configuration

The Lucene support provides Spring 2 namespaces in order to make easier the configuration of differents
entities.

10.1. Lucene

In order to the namespace, you need to configure as a standard XML namespace on the beans tag in the Spring
configuration. Thisway to do is the common one used by all the standard Spring 2 namespaces.

The identifier of the Lucene namespace is htt p: / / wwv. spri ngf r amewor k. or g/ schema/ | ucene and the related
xsd fileht t p: / / www. spri ngf r amewor k. or g/ schema/ | ucene/ | ucene-i ndex. xsd. The following code describes
the configuration of this namespace:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: |l ucene="http://ww. springfranework. org/ schema/ | ucene"
xsi : schemaLocati on="http://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
http: //ww. spri ngfranework. or g/ schena/ | ucene
http://ww. springframework. or g/ schema/ | ucene/ | ucene-i ndex. xsd" >

(

</ beans>

)

Now, you can use the namespace in order to configure easily the Lucene resources of the support.

10.1.1. Resource configuration

The central of this namespace isthei ndex tag which allows to configure the type of directory and the resources
to interact with it to both index and search documents. The following tags can be used insideit:

e ranDirectory Of fsDi rect ory in order to specify the type of directory used;
* i ndexFact ory in order to configure the index factory resource used to index documents

 searcher Fact ory in order to configure the searcher factory resource used to index documents

Note that it's not mandatory to use both i ndexFact ory and sear cher Fact ory tags at the same time. If you only
need to make searchs, you can only specify asear cher Fact ory tag.

The following describes a simple use of thei ndex tag. You can note that a global Lucene analyzer is specified
to the tag. This analyzer is used by both the index factory and searcher factory.

<bean id="anal yzer" cl ass="org. apache. | ucene. anal ysi s. Si npl eAnal yzer"/>

<l ucene:index id="nyDirectory" anal yzer-ref="anal yzer">
<l ucene: fsDirectory | ocation="/org/springframework/| ucene/ config"/>
<l ucene: i ndexFactory concurrent="1ock" />
<l ucene: sear cher Fact ory/ >

</l ucene: i ndex>

Every tags used within the i ndex tag can specify their own i d attribute if necessary. In this case, they are used
for the corresponding created beans. However, and you can see upper, you can specify ani d on thei ndex tag.
This attribute is used to determine a default value for the identifiers of the inner tags if ani d attribute is not

Spring Lucene (0.8-SNAPSHOT) 27

Configuration

specified. Here are the strategies of creating:

« For the*Di rect ory tags, the value of the attribute is directly used;

» For thei ndexFact ory tag, the value of the attribute is suffixed by - i ndexFact ory;

» For the sear cher Fact or y tag, the value of the attribute is suffixed by - sear cher Fact ory;

When using the fsDirectory tag in order to configure a filesystem directory, you need to use the | ocat i on
attribute to specify its location. The Spring 10 abstraction can be used in the attribute to locate the index in the
classpath or in the filesystem for instance. If an in-memory index is configured with the ranDi rectory tag,

there is no need to use any attribute.

For both the i ndexFact ory and sear cher Fact ory tags, the t ype attribut can be used in order to specify the
type of the corresponding implementation to used. By default, the value issi npl e.

The following table describes all the possible values of thet ype attribute for the both the later tags:

Table 10.1.

Tag

i ndexFact ory

sear cher Factory

sear cher Factory

Value

si nmpl e

simple

single

Description

Configure the
Si nmpl el ndexFact ory
implementation for the index
factory. In this case, an index
reader or writer is created for each
method of the template unless you
use the transactional support where
the scopeistied to the transaction.

Configure the
Si npl eSear cher Fact ory
implementation for the searcher
factory. In this case, a index
searcher is created for each method
of the template.

Configure the
Si ngl eSear cher Fact ory
implementation for the searcher
factory. In this case, a single index
searcher is created and used for
each method of the template. This
searcher is destroyed when the
application shutdown.

For the index factory resource, a concurrent attribut can be used in order to enable concurrent access to
Lucene reader and writer. The only possible valueis| ock in order to configure alock based approach.

10.1.2. Analyzer configuration

Spring Lucene (0.8-SNAPSHOT)

28

Configuration

Both the index factory and searcher factory need a Lucene analyzer for their configuration. Like the id
attribute, an analyzer can be configured in the global way according to the anal yzer - ref attribute of thei ndex
tag. In this case, the configured analyzer is used by both index and searcher factories, as shown in the following

code:

<bean id="anal yzer" cl ass="org. apache. | ucene. anal ysi s. Si npl eAnal yzer"/>

<l ucene:index id="nyDirectory" anal yzer-ref="anal yzer">
<l ucene: fsDirectory | ocation="/org/springframework/| ucene/ config"/>
<l ucene: i ndexFact ory/ >
<l ucene: sear cher Factory/ >

</l ucene: i ndex>

If you want to configure the analyzer bean as an inner bean, the anal yzer inner tag can use as described in the
following code:

<l ucene:index id="nyDirectory">
<l ucene: anal yzer >
<bean cl ass="org. apache. | ucene. anal ysi s. Si npl eAnal yzer"/>
</l ucene: anal yzer>
<l ucene: fsDirectory |ocation="/org/springframework/| ucene/ config"/>
<l ucene: i ndexFact ory/ >
<l ucene: sear cher Fact ory/ >
</l ucene: i ndex>

The namespace provides too the possibility to configure different analyzers for the index and search factories
by using the anal yzer-ref attribute of the i ndexFactory and searcher Factory tags. The following code
describes the aspect:

<bean id="anal yzer1" cl ass="org. apache. | ucene. anal ysi s. Si npl eAnal yzer"/>
<bean id="anal yzer2" cl ass="org. apache. | ucene. anal ysi s. Si npl eAnal yzer"/ >

<l ucene:index id="">
<l ucene:fsDirectory |ocation="/org/springfranmework/|ucene/config"/>
<l ucene: i ndexFactory id="" concurrent="1ock" analyzer-ref="analyzerl"/>
<l ucene: searcherFactory id="" analyzer-ref="anal yzer2"/>

</l ucene: i ndex>

Like the global approach, both i ndexFact ory and sear cher Fact ory tags can configure an analyzer as an inner
bean using the anal yzer inner tag, as shown below:

<bean id="anal yzer" cl ass="org. apache. | ucene. anal ysi s. Si npl eAnal yzer"/>

<l ucene:index id="">
<l ucene:fsDirectory |ocation="/org/springfranmework/|ucene/config"/>
<l ucene: i ndexFactory id="" concurrent="1ock" analyzer-ref="analyzer"/>
<l ucene: searcher Factory id="">
<l ucene: anal yzer >
<bean cl ass="org. apache. | ucene. anal ysi s. Si npl eAnal yzer"/>
</l ucene: anal yzer >
</ | ucene: sear cher Fact or y>
</l ucene: i ndex>

Spring Lucene (0.8-SNAPSHOT) 29

Part lll. Solr Support Reference
Documentation

Spring Lucene (0.8-SNAPSHOT)

30

Part IV. Other Resources

In addition to this reference documentation, there are a number of other resources that may help you learn how
to use OSGi and Spring Dynamic Modules. These additional, third-party resources are enumerated in this
section.

Spring Lucene (0.8-SNAPSHOT) 31

Part V. Appendixes

Spring Lucene (0.8-SNAPSHOT)

32

	Spring Lucene Reference Guide
	Table of Contents
	Part I. Introduction
	Chapter 1. Lucene
	1.1. Lucene technology
	1.2. Related tools
	1.2.1. Lucene Java
	1.2.2. Solrj
	1.2.3. Tika

	Chapter 2. Other tools available
	2.1. Compass
	2.2. Hibernate Search

	Chapter 3. Aim of the support
	3.1. Architecture and structure
	3.2. Abstraction layer upon Lucene
	3.3. Easy configuration
	3.4. Template-driven approach
	3.5. Document handler

	Chapter 4. History of the support
	Chapter 5. Development
	5.1. Obtain the sources
	5.2. Modules
	5.3. Compile and build the modules

	Chapter 6. Quick start dedicated to the Lucene indexing support
	6.1. Aim of the quickstart
	6.2. Configure the index resources
	6.3. Indexing documents
	6.4. Transactions

	Chapter 7. Quick start dedicated to the Lucene search support
	7.1. Aim of the quickstart
	7.2. Configure the search resources
	7.3. Search documents in the index

	Part II. Lucene Support Reference Documentation
	Chapter 8. Lucene indexing support
	8.1. Concepts
	8.2. Configure indices
	8.3. Root entities
	8.4. Index root entities
	8.4.1. Simple indexing based on Lucene entities
	8.4.2. Indexing using the abstraction methods of the template
	8.4.3. Analyzer specification
	8.4.4. Other indexing operations
	8.4.5. Use of the underlying resource

	8.5. DAO support class
	8.6. Resource management and transactions

	Chapter 9. Lucene search support
	9.1. Concepts
	9.2. Root entities
	9.3. Search root entities
	9.3.1. Simple searches based on a query string
	9.3.2. Use of Lucene classes for the searches
	9.3.3. Use of the underlying resource
	9.3.4. Extract results of searches

	9.4. DAO support class
	9.5. Advanced searches
	9.5.1. Support of queries
	9.5.2. Filter and sort
	9.5.3. Pagination

	9.6. Object approach

	Chapter 10. Configuration
	10.1. Lucene
	10.1.1. Resource configuration
	10.1.2. Analyzer configuration

	Part III. Solr Support Reference Documentation
	Part IV. Other Resources
	Part V. Appendixes

